Exploring the Donut-shaped Van Allen Belts

In terms of the variables r and R, the formula for the volume of a torus is given by the rather scary-looking formula:

$$
V=2 \pi^{2} R r^{2}
$$

Problem 1 - What is the circumference of the circle with a radius of R ?

Problem 2 - What is the area of a circle with a radius of r ?

Problem 3 - If you dragged the area of the circle in Problem 2, along a distance equal to the circumference of the circle in Problem 2, what would be the formula for the volume that you swept out?

Problem 4 - If the Van Allen belts can be approximated by a torus with $r=16,000 \mathrm{~km}$, and $R=26,000 \mathrm{~km}$, to two significant figures, what is the total volume of the Van Allen belts in cubic kilometers?

Problem 5 - To two significant figures, how many spherical Earths can you fit in this volume if $r=6378 \mathrm{~km}$?

Answer Key

Problem 1 - What is the circumference of the circle with a radius of R ?
Answer: $\mathrm{C}=2 \pi \mathrm{R}$
Problem 2 - What is the area of a circle with a radius of r ?
Answer: $\quad A=\pi r^{2}$

Problem 3 - If you dragged the area of the circle in Problem 2, along a distance equal to the circumference of the circle in Problem 2, what would be the formula for the volume that you swept out?

Answer: Volume = Area x distance

$$
\begin{aligned}
& =\left(\pi r^{2}\right) \times(2 \pi R) \\
& =2 \pi^{2} R r^{2}
\end{aligned}
$$

Problem 4 - If the Van Allen belts can be approximated by a torus with $r=16,000 \mathrm{~km}$, and $\mathrm{R}=$ $26,000 \mathrm{~km}$, to two significant figures what is the total volume of the Van Allen belts in cubic kilometers?

Answer:
$r=16000 \mathrm{~km} \times(1000 \mathrm{~m} / 1 \mathrm{~km})=16,000,000$ meters
$\mathrm{R}=26000 \mathrm{~km} \times(1000 \mathrm{~m} / 1 \mathrm{~km})=26,000,000$ meters

$$
\begin{aligned}
V & =2(3.14)^{2}\left(2.6 \times 10^{7}\right)\left(1.6 \times 10^{7}\right)^{2} \\
& =1.3 \times 10^{23} \text { meters }^{3}
\end{aligned}
$$

Problem 5 - To two significant figures, how many spherical Earths can you fit in this volume if $\mathrm{r}=6378 \mathrm{~km}$?

Answer: $V=4 / 3 \pi r^{3}$

$$
\begin{aligned}
& V=1.33(3.14)\left(6.378 \times 10^{6} \mathrm{~m}\right)^{3} \\
& \mathrm{~V}=1.1 \times 10^{21} \text { meters }^{3}
\end{aligned}
$$

So 1.3×10^{23} meters $^{3} / 1.1 \times 10^{21}$ meters $^{3}=118 \quad$ or $\quad 120$ Earths!

