The Atmospheric Re-Entry of UARS

TheUpper Research Satellite (UARS) was

launched in 1991 . After 15 years of
research, in 2005 its orbit was lowered
from 550 km to 360 km as part of the
orbital disposal of this retired satellite.
Through atmospheric drag, the satellite
began a slow continued descent from
352 km in 2008 to 320 km in 2011 . By
July, the pace quickened as the satellite
steadily encountered a denser
atmosphere. At the extrapolated rate of
descent, it was predicted that the
satellite would finally burn-up by
September $23 / 24$ an event that
intrigued and concerned millions of
people who worried that some part of
the satellite might strike them or do
significant property damage.

The table below gives the perigee altitude in kilometers of the satellite at various dates in 2011 during its descent from orbit.

Date	Day	Altitude	Date	Day	Altitude
July 20	1	291	Sept. 17	59	220
August 19	30	273	Sept. 18	60	215
Sept. 6	48	249	Sept. 19	61	210
Sept. 7	49	247	Sept. 20	62	205
Sept. 8	50	245	Sept. 21	63	190
Sept. 12	54	235	Sept. 22	64	175
Sept. 15	57	230	Sept. 23	65	160
Sept. 16	58	225			

Problem 1-Graph these points and connect the points with a smooth curve.

Problem 2 - What is the rate of altitude loss in meters per hour between A) August 19 and September 6? B) September 17 and 18? C) September 22 and 23?

Problem 3 - When do you predict the satellite reaches zero altitude?

Problem 1-Graph these points and connect the points with a line.

Problem 2 - What is the rate of altitude loss in meters per hour between A) August 19 and September 6? B) September 17 and 18? C) September 22 and 23?

Answer: A) $\quad R=(249-273) /(48-30)$

$$
\begin{aligned}
& =-1.33 \mathrm{~km} / \mathrm{day} \times(1000 \mathrm{~m} / 1 \mathrm{~km}) \times(1 \text { day } / 24 \mathrm{~h}) \\
& =-56 \text { meters } / \text { hour } .
\end{aligned}
$$

B) $R=\mathbf{- 2 0 8}$ meters/hour.
C) $R=\mathbf{- 6 2 5}$ meters/hour.

Problem 3 - When do you predict the satellite reaches zero altitude?
Answer: Students can use their hand-drawn curve to estimate that the 'zero point' is reached on Day 66, which is September 24. Students can also program the data into an Excel spreadsheet and use various 'Trendlines' to extrapolate the data. Students should quickly realize that because the rate of descent changes constantly, a linear equation using a constant 'slope' will not work.

