Snowflake Growth Rates and Surface Area

A snowflake is a flat figure whose area doubles over time as liquid droplets condense on its surface. For average cloud conditions, the area doubles every 2 hours.

No matter what the shape of a polygon, the area of a polygon will increase by a fixed amount as the size of the polygon increases.

Problem 1 - Suppose the time to double its area is 2 hours. How many doublings in area will have occurred in 8 hours?

Problem 2 - If the area of the snowflake at the start of its growth is 1 square millimeter, what will its area be after 8 hours? To organize your thinking about snowflake growth, create a table for the snowflakes size and area.

Problem 3 - If the size of the snowflake was 1 millimeter at the start of growth, what will be its size at the end of a snow storm that lasted 8 hours if the area doubling time is 2 hours? To organize your thinking about snowflake growth, create a table for the snowflakes size and area.

Problem 1 - Suppose the time to double its area is 2 hours. How many doublings in area will have occurred in 8 hours?

Answer: The snowflake has been growing for 8 hours which is $8 / 2=\mathbf{4}$ doubling times.

Problem 2 - If the area of the snowflake at the start of its growth is 1 square millimeter, what will its area be after 8 hours?

Doubling	1	2	3	4	5	6
Area	2	4	8	16	32	64
Size	1.4	2	2.8	4	5.7	8

Answer: It will have an area that is $2 \times 2 \times 2 \times 2=16$ times larger or 16 square millimeters.

Problem 3 - If the size of the snowflake was 1 millimeter at the start of growth, what will be its size at the end of a snow storm that lasted 8 hours if the area doubling time is 2 hours?

Answer: 8 hours = 4 doubling times so it has increased in area by 16 times. Because area $=$ length x length, since $16=4 \times 4$, the snowflake has increased its size by 4 times so it is now $1 \mathrm{~mm} \times 4=4$ millimeters in diameter.

