Unit Conversions - Energy, Power, Flux

Energy is measured in a number of ways depending on what property is being represented.

Total Energy - Joules and ergs - The total amount of energy in various forms (kinetic, potential, magnetic, thermal, gravitational)

Power - Watts, Joules/second or ergs/second - the rate at which energy is produced or consumed in time. Power = Energy/Time

Flux - Watts/meter ${ }^{2}$, Joules $/ \mathrm{sec} /$ meter 2 or ergs/sec/meter ${ }^{2}$ - the rate with which energy flows through a given area in given amount of time: Flux=Power/Area

1 Joule $=10$ million ergs
1 Watt = 1 Joule/1 second
1 hour $=3600$ seconds

1 kilowatt = 1,000 watts
1 megaJoule = 1,000,000 Joules
3 feet $=1.0$ meters

Example: A 5-watt flashlight is left on for 1 hour: Convert its energy consumption of 5 watt-hours to Joules.

Notice how the compound unit 'watt' is handled so that the appropriate colored units cancel. The canceling units are color-coded for convenience

Problem 1 - The flux of sunlight at Earth's surface is 1300 Watts/meter ${ }^{2}$. Convert this flux to ergs $/ \mathrm{sec} / \mathrm{cm}^{2}$.

Problem 2 - A 100-watt bulb shines light over a wall with a surface area of 25 meters ${ }^{2}$. What is the flux of light energy in Joules/sec/meter ${ }^{2}$?

Problem 3 - The common energy unit for electricity is the watt-hour (Wh), which can be written as 1 watt $\times 1$ hour. How many megajoules equal 1 kilowatthour (1 kWh)?

Problem 4 - How many ergs of energy are collected from a solar panel on a roof, if the sunlight provides a flux of 300 Joules $/ \mathrm{sec} /$ meter ${ }^{2}$, the solar panels have an area of 27 square feet, and are operating for 8 hours during the day?

Problem 1 -

Problem 2 -

Problem 3 -

Problem 4 -

