Symbol	Name	Value
С	Speed of light	2.9979 x 10 ¹⁰ cm/sec
h	Planck's constant	6.6262 x 10 ⁻²⁷ erg sec
m	Electron mass	9.1095 x 10 ^{-28 gms}
е	Electron charge	4.80325 x 10 ⁻¹⁰ esu
G	Gravitation	6.6732 x 10 ⁻⁸ dyn cm ²
	constant	gm ⁻²
М	Proton mass	1.6726 x 10 ⁻²⁴ gms

Also use $\pi = 3.1415926$

Although there are only a dozen fundamental physical constants of Nature, they can be combined to define many additional basic constants in physics, chemistry and astronomy.

In this exercise, you will evaluate a few of these 'secondary' constants to three significant figure accuracy using a calculator and the defined values in the table.

Problem 1 - Bremstrahlung Radiation Constant:

$$\frac{32\pi^2 e^6}{3(2\pi)^{1/2}m^3c}$$

 $\frac{32\pi^2 e^6 (2\pi^2 e^4 m)}{3^{3/2} h^3}$

Problem 2 - Photoionization Constant:

Problem 3 - Stark Line Limit:
$$\frac{16\pi^4 m^2 e^4}{h^4 M^5}$$

Problem 4 - Thompson Scattering Cross-section:

Problem 5 - Gravitational Radiation Constant: $\frac{32}{5} \frac{G^5}{c^{10}}$

Problem 6 - Thomas-Fermi Constant:
$$\frac{324}{175} \left(\frac{4}{9\pi}\right)^{2/3}$$

Problem 7 - Black Hole Entropy Constant: $\frac{c^3}{2hG}$

http://spacemath.gsfc.nasa.gov

Space Math

$$\frac{8\pi}{3} \left(\frac{e^2}{mc^2}\right)^2$$

Answer Key

Method 1: Key-in to a calculator all the constants with their values as given to all indicated significant figures, write down final calculator answer, and round to three significant figures.

Method 2: Round all physical constants to $\underline{4}$ significant figures, key-in these values on the calculator, then round final calculator answer to 3 significant figures.

Note: When you work with numbers in scientific notation, Ex 1.23×10^5 , the leading number '1.23' has 3 significant figures, but 1.23000 has 6 significant figures if the '000' are actually measured to be '000', otherwise they are just non-significant placeholders.

Also, you cannot have a final answer in a calculation that has more significant figures than the smallest significant figure number in the set. For example, 6.25*5.1 which a calculator would render as 31.875 is 'only good' to 2 significant figures (determined from the number 5.1) so the correct, rounded, answer is 32.

Problem	Method 1	Method 2
1	2.28 x 10 ¹⁶	2.27 x 10 ¹⁶
2	2.46 x 10 ⁻³⁹	2.46 x 10 ⁻³⁹
3	2.73 x 10 ¹³⁵	2.73 x 10 ¹³⁵
4	6.65 x 10 ⁻²⁵	6.64 x 10 ⁻²⁵
5	-140 1.44 x 10	1.44 x 10 ⁻¹⁴⁰
6	5.03 x 10 ⁻¹	5.03 x 10 ⁻¹
7	3.05 x 10 ⁶⁴	3.05 x 10 ⁶⁴

Note Problem 1 and 4 give slightly different results.

Problem 1:	Method 1 answer	3.8784/1.7042 = 2.27578 or 2.28
	Method 2 answer	3.8782/1.7052 = 2.2743 = 2.27

Problem 4: Method 1 answer 1.3378/2.0108 = 0.6653 = 0.665 Method 2 answer 1.3376/2.0140 = 0.6642 = 0.664