Evaluating Secondary Physical Constants

Symbol	Name	Value
c	Speed of light	$2.9979 \times 10^{10} \mathrm{~cm} / \mathrm{sec}$
h	Planck's constant	$6.6262 \times 10^{-27} \mathrm{eg} \mathrm{sec}$
m	Electron mass	$9.1095 \times 10^{-28} \mathrm{gms}$
e	Electron charge	$4.80325 \times 10^{-10} \mathrm{esu}$ G Gravitation constant$6.6732 \times 10^{-8} \mathrm{dyn} \mathrm{cm}$ gm^{-2}
M	Proton mass	$1.6726 \times 10^{-24} \mathrm{gms}$

Also use $\pi=3.1415926$

Although there are only a dozen fundamental physical constants of Nature, they can be combined to define many additional basic constants in physics, chemistry and astronomy.

In this exercise, you will evaluate a few of these 'secondary' constants to three significant figure accuracy using a calculator and the defined values in the table.

Problem 1 - Bremstrahlung Radiation Constant: $\quad \frac{32 \pi^{2} e^{6}}{3(2 \pi)^{1 / 2} m^{3} c}$

Problem 2 - Photoionization Constant: $\frac{32 \pi^{2} e^{6}\left(2 \pi^{2} e^{4} m\right)}{3^{3 / 2} h^{3}}$

Problem 3 - Stark Line Limit: $\frac{16 \pi^{4} m^{2} e^{4}}{h^{4} M^{5}}$

Problem 4 - Thompson Scattering Cross-section: $\frac{8 \pi}{3}\left(\frac{e^{2}}{m c^{2}}\right)^{2}$

Problem 5 - Gravitational Radiation Constant: $\quad \frac{32}{5} \frac{G^{5}}{c^{10}}$

Problem 6 - Thomas-Fermi Constant: $\quad \frac{324}{175}\left(\frac{4}{9 \pi}\right)^{2 / 3}$

Problem 7 - Black Hole Entropy Constant: $\frac{c^{3}}{2 h G}$

Method 1: Key-in to a calculator all the constants with their values as given to all indicated significant figures, write down final calculator answer, and round to three significant figures.

Method 2: Round all physical constants to 4 significant figures, key-in these values on the calculator, then round final calculator answer to 3 significant figures.

Note: When you work with numbers in scientific notation, Ex 1.23×10^{5}, the leading number '1.23' has 3 significant figures, but 1.23000 has 6 significant figures if the '000' are actually measured to be '000', otherwise they are just non-significant placeholders.

Also, you cannot have a final answer in a calculation that has more significant figures than the smallest significant figure number in the set. For example, 6.25*5.1 which a calculator would render as 31.875 is 'only good' to 2 significant figures (determined from the number 5.1) so the correct, rounded, answer is 32.

Problem	Method 1	Method 2
1	2.28×10^{16}	2.27×10^{16}
2	2.46×10^{-39}	2.46×10^{-39}
3	2.73×10^{135}	2.73×10^{135}
4	6.65×10^{-25}	6.64×10^{-25}
5	1.44×10^{-140}	1.44×10^{-140}
6	5.03×10^{-1}	5.03×10^{-1}
7	3.05×10^{64}	3.05×10^{64}

Note Problem 1 and 4 give slightly different results.
Problem 1: Method 1 answer $3.8784 / 1.7042=2.27578$ or 2.28 Method 2 answer $3.8782 / 1.7052=2.2743=2.27$

Problem 4: Method 1 answer 1.3378/2.0108 $=0.6653=0.665$
Method 2 answer $1.3376 / 2.0140=0.6642=0.664$

