Kelvin Temperatures and Very Cold Things!

To keep track of some of the coldest things in the universe, scientists use the Kelvin temperature scale which begins at 0 Kelvin, which is also called Absolute Zero. Nothing can ever be colder than Absolute Zero because at this temperature, all motion stops. The table to the left shows some typical temperatures of different systems in the universe.

You are probably already familiar with the Centigrade (C) and Fahrenheit (F) temperature scales. The two formulas below show how to switch from degrees-C to degrees-F.

$$
C=-\frac{5}{9}(F-32) \quad F=\frac{9}{5}-C+32
$$

Because the Kelvin scale is related to the Centigrade scale, we can also convert from Centigrade to Kelvin (K) using the equation:

$$
K=273+C
$$

Use these three equations to convert between the three temperature scales:

Problem 1: $\quad 212 \mathrm{~F}$ converted to K
Problem 2: $\quad 0 \mathrm{~K}$ converted to F
Problem 3: 100 C converted to K
Problem 4: -150 F converted to K
Problem 5: $\quad-150 \mathrm{C}$ converted to K
Problem 6: Two scientists measure the daytime temperature of the moon using two different instruments. The first instrument gives a reading of +107 C while the second instrument gives + 221 F . A) What are the equivalent temperatures on the Kelvin scale; B) What is the average daytime temperature on the Kelvin scale?

$$
C=\frac{5}{9}(F-32) \quad F=\stackrel{9}{5}--C+32 \quad K=273+C
$$

Problem 1: $\quad 212 \mathrm{~F}$ converted to K:
First convert to C: $\quad \mathrm{C}=5 / 9(212-32)=+100 \mathrm{C}$. Then convert from C to K:
$K=273+100=373$ Kelvin

Problem 2: 0 K converted to F: First convert to Centigrade:
$C=K-273$ so $C=-273$ degrees. Then convert from C to F :
F = 9/5 (-273) + $32=-459$ Fahrenheit.

Problem 3: 100 C converted to $\mathrm{K}: \quad \mathrm{K}=273+\mathrm{C}=373$ Kelvin.

Problem 4: -150 F converted to K : Convert to Centigrade $C=5 / 9(-150-32)=-101 \mathrm{C}$. Then convert from Centigrade to Kelvin: $\mathrm{K}=273-101$ = 172 Kelvin.

Problem 5: $\quad-150 \mathrm{C}$ converted to $\mathrm{K}: \quad \mathrm{K}=273+(-150)=123$ Kelvin

Problem 6: Two scientists measure the daytime temperature of the moon using two different instruments. The first instrument gives a reading of +107 C while the second instrument gives + 221 F.
A) What are the equivalent temperatures on the Kelvin scale?;

107 C becomes $\mathrm{K}=273+107=380$ Kelvins.
221 F becomes $\mathrm{C}=5 / 9(221-32)=105 \mathrm{C}$, and so $\mathrm{K}=273+105=378$ Kelvins.
B) What is the average daytime temperature on the Kelvin scale?

Answer: $(380+378) / 2=379$ Kelvins.

