The Oscillation Period of Gaseous Spheres

Any collection of matter that is governed by the force of gravity has a natural period of oscillation. For example, a simple pendulum such as a playground swing, will move back and forth with a time period in seconds, T , given by the formula to the right, where L is the length of the swing in centimeters, and g is the acceleration of gravity at Earth's surface given by $980 \mathrm{~cm} / \mathrm{sec}^{2}$. The period of a swing that is 3 meters long is then $\mathrm{T}=3.5$ seconds.

This behavior also applies to any body held together by gravity whether it is a star or a planet. The natural oscillation period of such bodies is given by the formula to the right, where D is the density of the body in grams $/ \mathrm{cm}^{3}$ and G is the Newtonian constant of Gravity

$$
T=2 \pi \sqrt{\frac{L}{G}}
$$

 $\mathrm{G}=6.6 \times 10^{-8}$ dynes $\mathrm{cm}^{2} \mathrm{gm}^{2}$ and T is in seconds. For example, the planet Jupiter has a density of about $D=1.3$ $\mathrm{gm} / \mathrm{cm}^{3}$ so its period, T, will be about 10,500 seconds or T $=3$ hours. From the information below, calculate the natural periods for the various astronomical bodies.

The sun is about 1.5 million kilometers across, and has an average density of about 1.5 grams/cm ${ }^{3}$

T = \qquad hours.

The Earth has a diameter of about 12,500 kilometers, and has an average density of about 5.5 grams/cm ${ }^{3}$

T = \qquad minutes.

A neutron star is about 50 kilometers in diameter, and has an average density of about 2×10^{14} grams/cm ${ }^{3}$
$\mathrm{T}=$ \qquad seconds.

Answer Key:

The sun is about 1.5 million kilometers across, and has an average density near its surface of about 1.5 grams $/ \mathrm{cm}^{3}$

$$
\begin{aligned}
\mathrm{T}^{2} & =3 \times(3.141) /\left(1.5 \times 6.6 \times 10^{-8}\right) \\
& =9.5 \times 10^{7}
\end{aligned}
$$

So $T=9,800$ seconds

$$
=2.7 \text { hours }
$$

The Earth has a diameter of about 12,500 kilometers, and has an average density of about 5.5 grams $/ \mathrm{cm}^{3}$

$$
\begin{aligned}
\mathrm{T}^{2} & =3 \times(3.141) /\left(5.5 \times 6.6 \times 10^{-8}\right) \\
& =2.5 \times 10^{7} \\
\text { So } \mathrm{T}= & 5,100 \text { seconds } \\
& =85 \text { minutes }
\end{aligned}
$$

A neutron star is about 50 kilometers in diameter, and has an average density of about 2 x $10^{14} \mathrm{grams} / \mathrm{cm}^{3}$

$$
\begin{aligned}
\mathrm{T}^{2} & =3 \times(3.141) /\left(2.0 \times 10^{14} \times 6.6 \times 10^{-8}\right) \\
& =7.1 \times 10^{-7} \\
\text { So } \mathrm{T} & =0.00085 \text { seconds }
\end{aligned}
$$

