
14 Correcting Bad Data Using Parity Bits

 Data is sent as a string of ‘1’s and ‘0’s which are
then converted into useful numbers by computer
programs. A common application is in digital imaging.
Each pixel is represented as a ‘data word’ and the image
is recovered by relating the value of the data word to an
intensity or a particular color. In the sample image to the
left, red is represented by the data word ‘10110011’,
green is represented by ‘11100101’ and yellow by the
word ‘00111000’, so the first three pixels would be
transmitted as the ‘three word’ string
‘101100111110010100111000’. But what if one of those
1-s or 0-s was accidentally reversed? You would get a
garbled string and an error in the color used in a
particular pixel.
 Since the beginning of the Computer Era, engineers
have anticipated this problem by adding a ‘parity bit’ to
each data word. The bit is ‘1’ if there are an even number
of 1’s in the word, and’ 0’ if there is an odd number. In the
data word for red ‘10110011’ the last ‘1’ to the right is the
parity bit.

The first few pixels in a large image

Space Math http://spacemath.gsfc.nasa.gov

 When data is produced in space, it is protected by parity bits, which alert the scientists that a particular
data word may have been corrupted by a cosmic ray accidentally altering one of the data bits in the word.
For example, Data Word A ‘11100011’ is valid but Data Word B ‘11110011’ is not. There are five ‘1’s but
instead of the parity bit being ‘0’ (‘11100010’), it is ‘1’ which means Data Word B had one extra ‘1’ added
somewhere. One way to recover the good data is to simply re-transmit data words several times and fill-in
the bad data words with the good words from one of the other transmissions. For example:

 Corrupted data string: 10111100 1011010 10101011 00110011 10111010
 Good data string: 10111100 1001010 10101011 10110011 10111010

 The second and fourth words have been corrupted, but because the string was re-transmitted twice, we
were able to ‘flag’ the bad word and replace it with a good word with the correct parity bit. Cosmic rays often
cause bad data in hundreds of data words in each picture, but because pictures are re-transmitted two or
three times, the bad data can be eliminated and a corrected image created.

Problem: Below are two data strings that have been corrupted by cosmic ray glitches. Look through the
data (a process called parsing) and use the right-most parity bit to identify all the bad data. Create a valid
data string that has been ‘de-glitched’.

String 1: 10111010 11110101 10111100 11001011 00101101
 01010000 01111010 10001100 00110111 00100110
 01111000 11001101 10110111 11011010 11100001
 10001010 10001111 01110011 10010011 11001011

String 2: 10111010 01110101 10111100 11011011 10101101
 01011010 01111010 10001000 10110111 00100110
 11011000 11001101 10110101 11011010 11110001
 10001010 10011111 01110011 10010001 11001011

14
Answer Key:

Problem: Below are two data strings that have been corrupted by cosmic ray glitches. Look through the
data (a process called parsing) and use the right-most parity bit to identify all the bad data. Create a valid
data string that has been ‘de-glitched’.

The highlighted data words are the corrupted ones.

String 1: 10111010 11110101 10111100 11001011 00101101
 01010000 01111010 10001100 00110111 00100110
 01111000 11001101 10110111 11011010 11100001
 10001010 10001111 01110011 10010011 11001011

String 2: 10111010 01110101 10111100 11011011 10101101
 01011010 01111010 10001000 10110111 10100110
 11011000 11001101 10110101 11011010 11110001
 10001010 10011111 01110011 10010001 01001011

In the first string, 11110101 has a parity bit of ‘1’ but it has an odd number of ‘1’ so its
parity should have been ‘0’ if it were a valid word. Looking at the second string, we see
that the word that appears at this location in the grid is ‘01110101’ which has the correct
parity bit. We can see that a glitch has changed the first ‘1’ in String 2 to a ‘0’ in the
incorrect String 1.

By replacing the highlighted, corrupted data words with the uncorrupted values in the other
string, we get the following de-glitched data words:

Corrected: 10111010 01110101 10111100 11001011 10101101
 01011010 01111010 10001100 00110111 00100110
 11011000 11001101 10110101 11011010 11110001
 10001010 10001111 01110011 10010001 11001011

The odd word is the first word in the third row. The first transmission says that it is ‘01111000’ and the
second transmission says it is ‘11011000’ Both wrong words have a parity of ‘1’ which means there is an
even number of ‘1’ in the first seven places in the data word. But the received parity bit says ‘0’ which means
there was supposed to be an odd number of ‘1’s in the correct word. Examining these two words, we see
that the first three digits are ‘011’ and ‘110’ so it looks like the first and third digits have been altered.
Unfortunately, we can’t tell what the correct string should have been. Because the rest of the word ‘11000’
has an even parity, all we can tell about the first three digits is that they had an odd number of ‘1’s so that
the total parity of the complete word is ‘0’ . This means the correct digits could have been ‘100’, ‘010’, ‘111’,
or ‘111’, but we can’t tell which of the three is the right one. That means that this data word remains
damaged and can’t be de-glitched even after the second transmission of the data strings.

Space Math http://spacemath.gsfc.nasa.gov

