Scientific notation is an important way to represent very big, and very small, numbers. Here is a sample of astronomical problems that will test your skill in using this number representation.

Problem 1: The sun produces 3.9×10^{33} ergs per second of radiant energy. How much energy does it produce in one year (3.2×10^{7} seconds)?

Problem 2: One gram of matter converted into energy yields 3.0×10^{20} ergs of energy. How many tons of matter in the sun is annihilated every second to produce its luminosity of 3.9 x 10^{33} ergs per second? (One metric ton $=10^{6}$ grams)

Problem 3: The mass of the sun is 1.98×10^{33} grams. If a single proton has a mass of 1.6 x 10^{-24} grams, how many protons are in the sun?

Problem 4: The approximate volume of the visible universe (A sphere with a radius of about 14 billion light years) is 1.1×10^{31} cubic light-years. If a light-year equals 9.5×10^{17} centimeters, how many cubic centimeters does the visible universe occupy?

Problem 5: A coronal mass ejection from the sun travels 1.5×10^{13} centimeters in 17 hours. What is its speed in kilometers per second?

Problem 6: The NASA data archive at the Goddard Space Flight Center contains 25 terabytes of data from over 1000 science missions and investigations. (1 terabyte $=10^{12}$ bytes). How many CD-roms does this equal if the capacity of a CD-rom is about 6×10^{8} bytes? How long would it take, in years, to transfer this data by a dial-up modem operating at 56,000 bits/second? (Note: one byte $=8$ bits).

Problem 7: Pluto is located at a distance of 5.9×10^{14} centimeters from Earth. At the speed of light ($2.99 \times 10^{10} \mathrm{~cm} / \mathrm{sec}$) how long does it take a light signal (or radio message) to travel to Pluto and return?

Problem 8: The planet HD209458b, now known as Osiris, was discovered by astronomers in 1999 and is at a distance of 150 light-years (1 light-year $=9.5 \times 10^{12}$ kilometers). If an interstellar probe were sent to investigate this world up close, traveling at a maximum speed of $700 \mathrm{~km} / \mathrm{sec}$ (about 10 times faster than our fastest spacecraft: Helios-1), how long would it take to reach Osiris?

Teacher's Guide Applications of Scientific Notation

Problem 1: The sun produces 3.9×10^{33} ergs per second of radiant energy. How much energy does it produce in one year (3.2×10^{7} seconds)? Answer: $3.9 \times 10^{33} \times 3.2 \times 10^{7}=1.2$ $\times 10^{41}$ ergs.

Problem 2: One gram of matter converted into energy yields 3.0×10^{20} ergs of energy. How many tons of matter in the sun is annihilated every second to produce its luminosity of 3.9 x 10^{33} ergs per second? (One metric ton $=10^{6}$ grams). Answer: $3.9 \times 10^{33} / 3.0 \times 10^{20}=1.3 \mathrm{x}$ 10^{13} grams per second, or $1.3 \times 10^{13} / 10^{6}=1.3 \times 10^{7}$ metric tons of mass.

Problem 3: The mass of the sun is 1.98×10^{33} grams. If a single proton has a mass of 1.6 x 10^{-24} grams, how many protons are in the sun? Answer: $1.98 \times 10^{33} / 1.6 \times 10^{-24}=1.2 \times 10^{57}$ protons.

Problem 4: The approximate volume of the visible universe (A sphere with a radius of about 14 billion light years) is 1.1×10^{31} cubic light-years. If a light-year equals 9.5×10^{17} centimeters, how many cubic centimeters does the visible universe occupy? Answer: 1 cubic light year $=$ $\left(9.5 \times 10^{17}\right)^{3}=8.6 \times 10^{53}$ cubic centimeters, so the universe contains $8.6 \times 10^{53} \times 1.1 \times 10^{31}$ $=9.5 \times 10^{84}$ cubic centimeters.

Problem 5: A coronal mass ejection from the sun travels 1.5×10^{13} centimeters in 17 hours. What is its speed in kilometers per second? Answer: $1.5 \times 10^{13} /\left(17 \times 3.6 \times 10^{3}\right)=2.4 \times 10^{8}$ $\mathrm{cm} / \mathrm{sec}=2,400 \mathrm{~km} / \mathrm{sec}$.

Problem 6: The NASA data archive at the Goddard Space Flight Center contains 25 terabytes of data from over 1000 science missions and investigations. (1 terabyte $=10^{12}$ bytes). How many CD-roms does this equal if the capacity of a CD-rom is about 6×10^{8} bytes? How long would it take, in years, to transfer this data by a dial-up modem operating at 56,000 bits/second? (Note: one byte $=8$ bits). Answer: $2.5 \times 10^{13} / 6 \times 10^{8}=4.2 \times 10^{4}$ Cdroms. It would take $2.5 \times 10^{13} / 7,000=3.6 \times 10^{9}$ seconds or about 110 years.

Problem 7: Pluto is located at a distance of 5.9×10^{14} centimeters from Earth. At the speed of light ($2.99 \times 10^{10} \mathrm{~cm} / \mathrm{sec}$) how long does it take a light signal (or radio message) to travel to Pluto and return? Answer: $2 \times 5.9 \times 10^{14} / 2.99 \times 10^{10}=3.9 \times 10^{4}$ seconds or 11 hours.

Problem 8: The planet HD209458b, now known as Osiris, was discovered by astronomers in 1999 and is at a distance of 150 light-years (1 light-year $=9.5 \times 10^{12}$ kilometers). If an interstellar probe were sent to investigate this world up close, traveling at a maximum speed of $700 \mathrm{~km} / \mathrm{sec}$ (about 10 times faster than our fastest spacecraft: Helios-1), how long would it take to reach Osiris? Answer: $150 \times 9.5 \times 10^{12} / 700=2.0 \times 10^{12}$ seconds or about 63,000 years!

