Adding a Level Gauge to a Conical Tank

Conical storage tanks come in many different sizes, from grain storage silos like the one top-left, to chemical storage and separating funnels like the one shown top-right. The nice thing about cones is that they have a wide base area that is easy to poor things into, and a valve at the conical tip lets you remove carefullymeasured amounts of whatever is being stored. Recall that the volume of a cone is given by $V=1 / 3 \pi R^{2} h$ where R is the base radius and H is the vertical height (not the slant height along the side of the cone!).

Problem 1 - Suppose that the function that relates the radius of the cone to the vertical height of the cone is given by $R(h)=0.5 h$, where h and R are in meters. The maximum height of the storage vessel is 3.0 meters. What is the radius of the upside-down conical tank at its maximum height?

Problem 2 - To the nearest tenth of a cubic meter, what is the maximum volume of this conical tank?

Problem 3 - At what height, H , should the astronaut place a mark on the outside of the tank to indicate a level of $1 / 2$ the volume of the conical tank?

Problem 1 - Suppose that the function that relates the radius of the cone to the vertical height of the cone is given by $R(h)=0.5 h$, where h and R are in meters. The maximum height of the storage vessil is 3.0 meters. What is the radius of the upsidedown conical tank at its maximum height?

Answer: $R(2.5)=0.5 \times 3.0=1.5$ meters.

Problem 2 - To the nearest tenth of a cubic meter, what is the maximum volume of this conical tank?

Answer: $\mathrm{H}=3.0$ meters, $\mathrm{R}=1.5$ meters

$$
\text { so } \begin{aligned}
V & =1 / 3(3.141)(1.5)^{2}(3.0) \\
& =7.1 \text { meters }^{3}
\end{aligned}
$$

Problem 3 - At what height should the astronaut place a mark on the outside of the tank to indicate a level of $1 / 2$ the volume of the conical tank?

Answer: We want $V=1 / 2 \times 7.1 \mathrm{~m}^{3}=3.55 \mathrm{~m}^{3}$
But $\mathrm{R}=0.5 \mathrm{H}$
So $V=1 / 3 \pi(0.5 H)^{2} H=0.333(3.141)(0.25) H^{3} \quad$ and so $V=0.26 H^{3}$
Then $\quad 3.55 \mathrm{~m}^{3}=0.26 \mathrm{H}^{3}$ and so solving for H we get $\mathbf{H}=\mathbf{2 . 4}$ meters.

