

Bungee jumping has become a popular but dangerous sport. It also shows how the acceleration of gravity is connected to the total distance traveled during the fall. The distance traveled is given by the formula

$$
\mathrm{D}=1 / 2 \mathrm{~g} \mathrm{~T}^{2}
$$

Where g is the acceleration of gravity in meters $/ \mathrm{sec}^{2}$, D is the distance in meters, and T is the elapsed time in seconds. For locations near the surface of Earth, $g=9.8$ meters/sec ${ }^{2}$ (32 feet/sec ${ }^{2}$)

Problem 1 - A confused Daredevil jumps from a plane at an altitude of 15,000 feet. How long does it take for the Daredevil to land if there is no air friction to slow him down?

Problem 2 - How fast would the Daredevil be traveling at the moment of impact if $S=32 T ?$

Problem 3 - Once he reaches 130 mph (190 feet/sec), called the terminal velocity, his freefall speed stops increasing. How soon after he jumps does he reach terminal velocity, and how far has he fallen from the plane?

Problem 4 - In 2012, Felix Baumgartner jumped from a high-altitude balloon at an altitude of 24 miles (127,000 feet), landing safely on the ground after 4 minutes and 19 seconds. With little atmosphere friction, he reached a maximum speed of 844 mph (1240 feet/sec). How long after he jumped did he reach this speed, and how high above the ground was he at that time?

Problem 5 - On Mars, the Valles Marineris canyon is 23,000 feet deep. If the acceleration of gravity is 12 feet $/ \mathrm{sec}^{2}$, how long would it take a rock to fall into the canyon and how fast is it traveling when it hits bottom?

Problem 1 - A confused Daredevil jumps from a plane at an altitude of 15,000 feet. How long does it take for the Daredevil to land if there is no air friction to slow him down?

Answer: $15,000=1 / 2(32) \mathrm{T}^{2}$, so $\mathrm{T}^{2}=937$ and so $\mathrm{T}=31$ seconds.

Problem 2 - How fast would the Daredevil be traveling at the moment of impact if $S=32 T$?
Answer: $\quad S=32 \times 31=992$ feet/second or 676 miles/hour!

Problem 3 - Once he reaches 130 mph (190 feet/sec), called the terminal velocity, his free-fall speed stops increasing. How soon after he jumps does he reach terminal velocity, and how far has he fallen from the plane?

Answer: $\quad 190=32 \times$ T so $T=\mathbf{6}$ seconds. He has fallen $d=1 / 2(32)(6)^{2}=\mathbf{5 7 6}$ feet.

Problem 4 - In 2012, Felix Baumgartner jumped from a high-altitude balloon at an altitude of 24 miles (127,000 feet), landing safely on the ground after 4 minutes and 19 seconds. With little atmosphere friction, he reached a maximum speed of $844 \mathrm{mph}(1240$ feet $/ \mathrm{sec}$). How long after he jumped did he reach this speed, and how high above the ground was he at that time?

$$
\text { Answer: } \begin{aligned}
& 1240=32 \mathrm{~T} \text { so } \mathrm{T}=39 \text { seconds. } \\
& \mathrm{D}=1 / 2(32)(39)^{2}=24,336 \text { feet, } \\
& \text { so } 127,000-24333=\mathbf{1 0 2 , 7 0 0} \text { feet from the ground. }
\end{aligned}
$$

Problem 5 - On Mars, the Valles Marineris canyon is 23,000 feet deep. If the acceleration of gravity is 12 feet $/ \mathrm{sec}^{2}$, how long would it take a rock to fall into the canyon and how fast is it traveling when it hits bottom?

Answer: $23,000=1 / 2(12) \mathrm{T}^{2}$ so $\mathrm{T}=\mathbf{6 2}$ seconds.
Speed $=12 \times 62=744$ feet $/ \mathrm{sec}$ or 507 mph.

