

Problem 1 - Two telescopes are used for astrophotography. The first has a mirror diameter of 20 -inches and a focal length of 5000 mm , the second one is more portable and has a diameter of 10 -inches and a focal length of 2000 mm . What are the image scales of each telescope?

Problem 2 - An astronomer wants to design a camera so that each pixel views an angle of only 0.5 arcseconds. If the width of each pixel is 8 micrometers (0.008 millimeters), what is the image scale he needs for the telescope, and what will be its focal length?

Problem 3 - If a digital camera array measures 20 millimeters across and consists of 2048 pixels, what will the image scale have to be so that the array can be used to photograph a star cluster with a diameter of $1 / 4$ degree? What will the telescope focal length have to be.

Problem 1 - Two telescopes are used for astrophotography. The first has a mirror diameter of 20 -inches and a focal length of 5000 mm , the second one is more portable and has a diameter of 10 -inches and a focal length of 2000 mm . What are the image scales of each telescope?

Answer: The first one is Scale $=206265 / 5000=41$ arcseconds $/ \mathrm{mm}$. The second one has 206265/2000mm = 103 arcseconds $/ \mathrm{mm}$.

Problem 2 - An astronomer wants to design a camera so that each pixel views an angle of only 0.5 arcseconds. If the width of each pixel is 8 micrometers (0.008 millimeters), what is the image scale he needs for the telescope, and what will be its focal length?

Answer: He needs a scale of 0.5 arcseconds $/ 0.008 \mathrm{~mm}$) $=62.5$ arcseconds $/ \mathrm{mm}$. The focal length will be $62.5=206265 / \mathrm{F}$ so $\mathrm{F}=\mathbf{3 3 0 0}$ millimeters.

Problem 3 - If a digital camera array measures 20 millimeters across and consists of 2048 pixels, what will the image scale have to be so that the array can be used to photograph a star cluster with a diameter of $1 / 4$ degree? What will the telescope focal length have to be.

Answer: $1 / 4$ degree $/ 20$ millimeters $=3600 \operatorname{arcsec}(1 / 4) / 20 \mathrm{~mm}=45 \operatorname{arcseconds} / \mathrm{mm}$. The Focal length is $45=206265 / F$ so $F=4583$ millimeters.

