



Mass = 9.5×10^{31} kg Volume = 5.0×10^{47} m³

In addition to mass and volume, density is the next most important feature of matter that we can easily determine. Density is just the mass of an object divided by its volume. Although density is usually given in terms of the unit kilograms/meter³, in astronomy we prefer to use the number of particles per cubic meter. It is easy to imagine how a cubic meter might contain 1000 atoms, but the equivalent density of 1.6×10^{-24} kg/m³ seems mysterious and doesn't provide much of a clue for how to think about it physically!

Problem 1 – Complete the table below by calculating the density of each astronomical object in terms of atoms per cubic meter.

Name	Volume (m ³)	Mass (kg)	Density (atoms/m ³)
Atmosphere of Earth	4.2x10 ¹⁸	5.1x10 ¹⁸	
Red supergiant star	2.3x10 ³³	4.0x10 ³¹	
Surface of our Sun	6.0x10 ²⁸	1.2x10 ²⁵	
Atmosphere of Moon	1.9x10 ¹⁵	1.0x10 ⁴	
Solar Corona	9.0x10 ²⁶	8.9x10 ¹³	
Interstellar Cloud	5.0x10 ⁴⁷	9.5x10 ³¹	
Orion Nebula	6.2x10 ⁵¹	1.5x10 ³³	
Solar Wind	1.4x10 ³⁴	4.5x10 ¹⁴	
Milky Way galaxy	1.6x10 ⁶⁰	2.0x10 ³⁹	
Van Allen radiation belts	1.3x10 ²³	1.1x10 ⁻²	

Space Math

http://spacemath.gsfc.nasa.gov

Answer Key

Problem 1 – Complete the table below by calculating the density of each astronomical object in terms of atoms per cubic meter.

Answer: example Solar Corona:

 $D = M/V = 8.9 \times 10^{13} \text{ kg}/9.0 \times 10^{26} \text{ m}^3 = 9.9 \times 10^{-14} \text{ kg/m}^3$

 $N = 9.9 \times 10^{-14} / 1.6 \times 10^{-27} = 6.2 \times 10^{13} \text{ atoms/m}^3$

Name	Volume (m ³)	Mass (kg)	Density (atoms/m ³)
Atmosphere of Earth	4.2x10 ¹⁸	5.1x10 ¹⁸	7.5x10 ²⁶
Red supergiant star	2.3x10 ³³	4.0x10 ³¹	1.1x10 ²⁵
Surface of our Sun	6.0x10 ²⁸	1.2x10 ²⁵	1.3x10 ²³
Atmosphere of Moon	1.9x10 ¹⁵	1.0x10 ⁴	3.3x10 ¹⁵
Solar Corona	9.0x10 ²⁶	8.9x10 ¹³	6.2x10 ¹³
Interstellar Cloud	5.0x10 ⁴⁷	9.5x10 ³¹	1.2x10 ¹¹
Orion Nebula	6.2x10 ⁵¹	1.5x10 ³³	1.5x10 ⁸
Solar Wind	1.4x10 ³⁴	4.5x10 ¹⁴	2.0x10 ⁷
Milky Way galaxy	1.6x10 ⁶⁰	2.0x10 ³⁹	8.1x10 ⁴
Van Allen radiation belts	1.3x10 ²³	1.1x10 ⁻²	53

Students can also be asked to compare how many times more dense is Object A than Object B? Example: Atmosphere of Moon / Milky Way galaxy = $3.3 \times 10^{15}/8.1 \times 10^{4}$ = 41 billion times!