

The satellite of Jupiter, Io, is a volcanically active moon that ejects 1,000 kilograms of ionized gas into space every second. This gas forms a torus encircling Jupiter along the orbit of lo. We will estimate the total mass of this gas based on data from the NASA Cassini and Galileo spacecraft.

Image: lo plasma torus (Courtesy
NASA/Cassini)

Problem 1 - Galileo measurements obtained in 2001 indicated that the density of neutral sodium atoms in the torus is about 35 atoms $/ \mathrm{cm}^{3}$. The spacecraft also determined that the inner boundary of the torus is at about 5 Rj , while the outer boundary is at about 8 Rj . ($1 \mathrm{Rj}=71,300 \mathrm{~km}$). A torus is defined by the radius of the ring from its center, R , and the radius of the circular cross section through the donut, r. What are the dimensions, in kilometers, of the lo torus based on the information provided by Galileo?

Problem 2 - Think of a torus as a curled up cylinder. What is the general formula for the volume of a torus with radii R and r ?

Problem 3 - From the dimensions of the lo torus, what is the volume of the lo torus in cubic meters?

Problem 4 - From the density of sodium atoms in the torus, what is A) the total number of sodium atoms in the torus? B) If the mass of a sodium atom is 3.7×10^{-20} kilograms, what is the total mass of the lo torus in metric tons?

Calculus:

Problem 5 - Using the 'washer method' in integral calculus, derive the formula for the volume of a torus with a radius equal to R , and a cross-section defined by the formula $x^{2}+y^{2}=r^{2}$. The torus is formed by revolving the cross section about the Y axis.

Problem 1 - The mid point between 5 Rj and 8 Rj is $(8+5) / 2=6.5 \mathrm{Rj}$ so $\mathrm{R}=6.5 \mathrm{Rj}$ and $\mathrm{r}=$ 1.5 Rj. Then $R=6.5 \times 71,300$ so $R=4.6 \times \mathbf{1 0}^{\mathbf{5}} \mathbf{~} \mathbf{k m}$, and $r=1.5 \times 71,300$ so $\mathbf{r}=\mathbf{1 . 1} \times \mathbf{1 0}^{\mathbf{5}}$ km.
Problem 2 - The cross-section of the cylinder is πr^{2}, and the height of the cylinder is the circumference of the torus which equals $2 \pi R$, so the volume is just $V=(2 \pi R) \times\left(\pi r^{2}\right)$ or $V=$ $2 \pi^{2} \mathrm{Rr}^{2}$.
Problem 3 -Volume $=2 \pi^{2}\left(4.6 \times 10^{5} \mathrm{~km}\right)\left(1.1 \times 10^{5} \mathrm{~km}\right)^{2}$ so $\mathrm{V}=1.1 \times 10^{17} \mathbf{k m}^{3}$.
Problem 4-A) 35 atoms $/ \mathrm{cm}^{3} \times(100000 \mathrm{~cm} / 1 \mathrm{~km})^{3}=3.5 \times 10^{16}$ atoms $/ \mathrm{km}^{3}$. Then number $=$ density x volume so $\mathrm{N}=\left(3.5 \times 10^{16}\right.$ atoms $\left./ \mathrm{km}^{3}\right) \times\left(1.1 \times 10^{17} \mathrm{~km}^{3}\right)$, so $\mathrm{N}=3.9 \times 10^{33}$ atoms. B) The total mass is $\mathrm{M}=3.9 \times 10^{33}$ atoms $\times 3.7 \times 10^{-20}$ kilograms/atom $=1.4 \times 10^{14}$ kilograms. 1 metric ton $=1000$ kilograms, so the total mass is $\mathbf{M}=\mathbf{1 0 0}$ billion tons.

Advanced Math:

Recall that the volume of a washer is given by $V=\pi\left(R(\text { outer })^{2}-R(\text { inner })^{2}\right) \times$ thickness. For the torus figure above, we see that the thickness is just dy. The distance from the center of the cross section to a point on the circumference is given by $r^{2}=x^{2}+y^{2}$. The width of the washer (the red volume element in the figure) is parallel to the X -axis, so we want to express its length in terms of y, so we get $x=\left(r^{2}-y^{2}\right)^{1 / 2}$. The location of the outer radius is then given by R (outer) $=R+\left(r^{2}-y^{2}\right)^{1 / 2}$, and the inner radius by R (inner) $=R$ $-\left(r^{2}-y^{2}\right)^{1 / 2}$. We can now express the differential volume element of the washer by $d V=\pi$ [$\left.\left(R+\left(r^{2}-y^{2}\right)^{1 / 2}\right)^{2}-\left(R-\left(r^{2}-y^{2}\right)^{1 / 2}\right)^{2}\right] d y$. This simplifies to $d V=\pi\left[4 R\left(r^{2}-y^{2}\right)^{1 / 2}\right] d y$ or $d V=4 \pi R\left(r^{2}-y^{2}\right)^{1 / 2} d y$. The integral can immediately be formed from this , with the limits y $=0$ to $y=r$. Because the limits to y only span the upper half plane, we have to double this integral to get the additional volume in the lower half-plane. The required integral is shown above.

This integral can be solved by factoring out the r from within the square-root, then using the substitution $U=y / r$ and $d U=1 / r$ dy to get the integrand $d V=8 \pi R r^{2}(1$ $\left.U^{2}\right)^{1 / 2} d U$. The integration limits now become $U=0$ to $U=1$. Since r and R are constants, this is an elementary integral with the solution $V=1 / 2 U\left(1-U^{2}\right)^{1 / 2}+1 / 2 \arcsin (U)$. When this is evaluated from $U=0$ to $U=1$, we get

$$
\begin{aligned}
& V=8 \pi R r^{2}[0+1 / 2 \arcsin (1)]-[0+1 / 2 \arcsin (0)] \\
& V=8 \pi R r^{2} 1 / 2(\pi / 2) \\
& V=2 \pi R r^{2}
\end{aligned}
$$

