On March 25, 2000 NASA launched a satellite called the Imager for Aurora-to Magnetosphere Global Exploration (IMAGE). One of the instruments on board this satellite was called RPI - the Radio Plasma Imager. It operates something like a policeman's radar gun. It sends out a pulse of radio waves into space, and listens for the echos of plasma clouds near the satellite. By measuring the time between transmission and echo, scientists can determine how far away the cloud is located. They can also determine the temperature and density of the cloud by studying the properties of the reflected radio signal even
 though the cloud may be 100,000 kilometers away.

The table below gives the direction of the reflected pulse in Column 2, and the time it took for the radio wave to travel from the spacecraft to the distant cloud and back again in Column 3. Using the fact that the speed of the radio pulse is equal to the speed of light ( $300,000 \mathrm{~km} / \mathrm{sec}$ ) calculate the distance to the cloud in kilometers in Column 4. Using the fact that the radius of Earth is 6.378 kilometers, convert the distances in Column 4 to multiples of Earth's radius (Re).

| Location | Direction <br> (degrees) | Round Trip <br> Time <br> (Seconds) | Distance <br> (in Km) | Distance <br> (in Re) |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 300 | 0.042 |  |  |
| 2 | 315 | 0.106 |  |  |
| 3 | 350 | 0.276 |  |  |
| 4 | 45 | 0.191 |  |  |
| 5 | 60 | 0.166 |  |  |
| 6 | 90 | 0.174 |  |  |
| 7 | 120 | 0.170 |  |  |
| 8 | 135 | 0.233 |  |  |
| 9 | 215 | 0.306 |  |  |
| 10 | 230 | 0.149 |  |  |
| 11 | 270 | 0.051 |  |  |

Note to Teachers: To complete this problem, students need to realize that they must divide the round-trip time by 2.0 to get the 'one-way' time to the cloud, and from this the cloud distance when multiplied by $300,000 \mathrm{~km} / \mathrm{sec}$.

Example: Location 2: Time $=0.106$ seconds. One-way time $=0.106 / 2=0.053$ seconds. Distance $=0.053 \mathrm{sec} \times 300,000 \mathrm{~km} / \mathrm{sec}=15,900$ kilometers. To get this in units of Earth radii, $15,900 \mathrm{~km} / 6378 \mathrm{~km}=2.5 \mathrm{Re}$.

For additional credit, student may plot these points using a compass to get the angles and a 4-quadrant graph paper marked in units of 'Re' along both axis.

| Location | Direction <br> (degrees) | Round Trip <br> Time <br> (Seconds) | Distance <br> (in Km) | Distance <br> (in Re) |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 300 | 0.042 | 6,300 | 1.0 |
| 2 | 315 | 0.106 | 15,900 | 2.5 |
| 3 | 350 | 0.276 | 41,400 | 6.5 |
| 4 | 45 | 0.191 | 28,650 | 4.5 |
| 5 | 60 | 0.166 | 24,900 | 3.9 |
| 6 | 90 | 0.174 | 26,100 | 4.1 |
| 7 | 120 | 0.170 | 25,500 | 4.0 |
| 8 | 135 | 0.233 | 34,950 | 5.5 |
| 9 | 215 | 0.306 | 45,900 | 7.2 |
| 10 | 230 | 0.149 | 22,350 | 3.5 |
| 11 | 270 | 0.051 | 7,650 | 1.2 |



