

The SAGE-III instrument on the International Space Station orbits Earth at a distance of $r=6,730 \mathrm{~km}$ from the center of Earth. The radius of Earth is $R=6,378 \mathrm{~km}$. The time for one complete orbit is about 90 minutes. As it travels from Point A to C in the figure, the height of the sun, h, above the edge of Earth decreases to zero and astronauts observe a sunset. Each time SAGE-III observes a sunrise or sunset, its instruments measure the brightness of the sun. From this sun-dimming information scientists can determine the aerosol content of the stratosphere above an altitude of 10 km .

Problem 1 - Use the Pythagorean Theorem to determine the length of a chord for a given value of h for $h<100 \mathrm{~km}$.

Problem 2 - Most of the sunlight extinction will happen within a height of $\mathrm{h}=40 \mathrm{~km}$. About how long is the total length of the chord near the sunset point in the orbit?

Problem 3 - About how many seconds will it take for the sunset to progress from $\mathrm{h}=40 \mathrm{~km}$ to $\mathrm{h}=0 \mathrm{~km}$?

Problem 1 - Use the Pythagorean Theorem to determine the length of a chord for a given value of h for $h<100 \mathrm{~km}$.

Answer: $I^{2}=r^{2}-(R+h)^{2}$ so
Length $=2 \mathrm{l}=2\left(\mathrm{r}^{2}-\mathrm{R}^{2}-2 R \mathrm{~h}-\mathrm{h}^{2}\right)^{1 / 2}$
Since $R=6378$ and $r=6730$ we have by simplifying
$L=2\left(6730^{2}-6378^{2}-2(6378) h-h^{2}\right)^{1 / 2}$
Factor out 6730^{2}
Then $\mathrm{L}=2(6730)\left(1-0.90-0.00028 \mathrm{~h}-(\mathrm{h} / 6730)^{2}\right)^{1 / 2}$
But $h / 6730$ is never more than $100 / 6730=0.015$ so we can ignore the h^{2} term entirely!
So, $L=13460(0.10-0.00028 \mathrm{~h})^{1 / 2}$

Problem 2 - Most of the sunlight extinction will happen within a height of $\mathrm{h}=40 \mathrm{~km}$. About how long is the total length of the chord near the sunset point in the orbit?

Answer: $\mathrm{h}=0$ at sunset so $\mathrm{L}=13460(0.10)^{1 / 2}=4256 \mathbf{~ k m}$.

Problem 3 - About how many seconds will it take for the sunset to progress from $\mathrm{h}=40 \mathrm{~km}$ to $\mathrm{h}=0 \mathrm{~km}$?

Answer: The ISS will travel about 40 km in its orbit. Since the circumference of the circular orbit is $C=2 \pi(6730 \mathrm{~km})=42280 \mathrm{~km}$, and this takes 90 minutes, the sunset range of 40 km will be traversed in

40 km
------------- $\times 90$ minutes $\times(60 \mathrm{sec} / 1$ minute $)=5$ seconds.
42280 km

