

Problem 1 - A human hair has a diameter of 100 micrometers (100 microns). If 1000 nanometers equals 1 micron, how many 250 nanometer aerosol particles can fit across the diameter of one human hair?

Problem 2 - If the density of a typical spherical sea salt aerosol particle is 2.0 grams $/ \mathrm{cm}^{3}$, and the particle has a diameter of 500 nanometers, what is the mass of a single aerosol particle in A) grams? B) micrograms?

Problem 3 - On an especially hazy day, the density of aerosol particles in the air is 10 million particles per cubic centimeter. If the particles have an average size of 900 nanometers and a density of 1.5 grams $/ \mathrm{cm}^{3}$, A) how much aerosol mass would there be in a cubic meter of air? B) If you breath-in 100 liters of air every minute, and 1 liter equals $1000 \mathrm{~cm}^{3}$, how many grams of aerosols do you inhale every day?

Problem 1 - A human hair has a diameter of 100 micrometers (100 microns). If 1000 nanometers equals 1 micron, how many 250 nanometer aerosol particles can fit across the diameter of one human hair?

Answer: Diameter of human hair in nanometers $=100$ micrometers \times (1000 nanometers $/ 1$ micrometer) $=100000$ nanometers. Since one aerosol is 250 nm in diameter, there would be $100000 / 250=400$ aerosol particles place end to end to cross the diameter of one human hair.

Problem 2 - If the density of a typical spherical sea salt aerosol particle is $2.0 \mathrm{grams} / \mathrm{cm}^{3}$, and the particle has a diameter of 500 nanometers, what is the mass of a single aerosol particle in A) grams? B) micrograms?

Answer: A) The radius of the aerosol is 250 nanometers. Since 1 meter $=100$ centimeters, the radius is $250 \times 10^{-9} \times(100 \mathrm{~cm} / 1$ meter $)=2.5 \times 10^{-5} \mathrm{~cm}$. Volume of a spherical particle $=4 / 3 \pi$ $\left(2.5 \times 10^{-5} \text { meters }\right)^{3}=6.5 \times 10^{-14} \mathrm{~cm}^{3}$. The mass in grams is then 2.0 grams $/ \mathrm{cm}^{3} \times$ Volume in cm^{3}, so $M=1.3 \times 10^{-13}$ grams.
B) 1 microgram $=10^{-6}$ grams, so $\mathbf{M}=1.3 \times 10^{-7}$ micrograms .

Problem 3 - On an especially hazy day, the density of aerosol particles in the air is 10 million particles per cubic centimeter. If the particles have an average size of 900 nanometers and a density of 1.5 grams $/ \mathrm{cm}^{3}$, A) how much aerosol mass would there be in a cubic meter of air? B) If you breath-in 100 liters of air every minute, and 1 liter equals $1000 \mathrm{~cm}^{3}$, how many grams of aerosols do you inhale every day?

Answer: A) Each particle has a mass of

$$
M=1.5 \mathrm{gm} / \mathrm{cm}^{3} \times\left(4 / 3 \pi\left(4.5 \times 10^{-5} \mathrm{~cm}\right)\right)^{3}=5.7 \times 10^{-13} \text { grams } .
$$

If the particle density is 10^{7} particles $/ \mathrm{cm}^{3}$, in 1 cubic meter there would be 10^{7} particles $/ \mathrm{cm}^{3} x$ $10^{6} \mathrm{~cm}^{3}=10^{13}$ particles, and so the total mass per cubic meter would be $5.7 \times 10^{-13} \mathrm{grams} \times 10^{13}$ particles $=\mathbf{5 . 7}$ grams!
B) You breath in 100 liters/minute $\times\left(1000 \mathrm{~cm}^{3} / 1\right.$ liter) \times (60 minutes $/ 1$ hour) $\times(24$ hours $/ 1$ day $)$ $=1.44 \times 10^{8} \mathrm{~cm}^{3}$. Since the aerosol mass is 5.7 grams $/$ meter 3 we have $1.44 \times 10^{8} \mathrm{~cm}^{3} \times(1$ meter $\left.{ }^{3} / 10^{6} \mathrm{~cm}^{3}\right) \times\left(5.7\right.$ grams $/ 1$ meter $\left.^{3}\right)=144 \times 5.7=821$ grams $/$ day.

