

Understanding the data graph:

Problem 1 - A meteorite with a density of $3 \mathrm{grams} / \mathrm{cm}^{3}$ has a diameter of 4 centimeters (about 1 1/2 inches).
A) What is the mass of this meteorite assuming it is a sphere?
B) From the graph, where on the horizontal axis are objects of this mass located?
C) What is the number of impacts per year you would expect over an area of 10,000 square kilometers?

Problem 2 - The function that best models the data in the graph is given by

$$
\mathrm{N}(\mathrm{~m})=0.025 \mathrm{~m}^{-0.9}
$$

where $N(m)$ is the number if impacts per square kilometer per year for objects with a mass of m grams. Using integral calculus, what is the total mass in tons of impacting objects each year, over the surface of Earth, in the mass range from 1 gram to 10^{20} grams? (Use $\pi=3.14$ and assume a spherical Earth with a radius of 6,378 km).

Problem 1 - Answers: A) Mass = Density x Volume. Radius of sphere $=2 \mathrm{~cm}$, so $\mathrm{M}=$ $3.0 \times(4 / 3)(3.14)(2)^{3}=\mathbf{1 0 0}$ grams. B) The horizontal axis is un units of Log(grams) so $\log (100)=2$, and this is the location half-way between 0 ' and ' 4 ' on the axis. C) From ' $x=2$ ' ,a vertical line intercepts the data at about ' $y=-3.5$ ' on the vertical axis. This represents $\log (N)=-3.5$ so that $N=0.00032$ impacts $/ \mathrm{km}^{2} /$ year. Over an area of $10000 \mathrm{~km}^{2}$, there would be an estimated 0.00032 impacts $/ \mathrm{km}^{2} /$ year $\times\left(10000 \mathrm{~km}^{2}\right)=$

3.2 impacts per year.

Problem 2 -What is the total mass in tons of impacting objects each year, over the surface of Earth, in the mass range from 1 gram to 10^{20} grams? (Use $\pi=3.14$ and assume a spherical Earth with a radius of $6,378 \mathrm{~km}$).

Answer: The total mass is the area under the curve: Mass $=N(m) d m$

$$
\begin{aligned}
M & =\int_{1}^{10^{20}} 0.025 m^{-0.9} d m \\
& =0.025(-0.9)\left[(1)^{0.1}-\left(10^{20}\right)^{0.1}\right] \\
& =0.025(0.9)\left(100^{2}\right) \\
& =2.25 \text { grams } / \mathrm{km}^{2} / \text { year }
\end{aligned}
$$

Area of Earth $=4 \pi(6378)^{2}=5.1 \times 10^{8} \mathrm{~km}^{2}$
So the total meteoritic mass per year is

$$
\begin{aligned}
& 2.25 \text { grams } / \mathrm{km}^{2} \times 5.1 \times 10^{8} \mathrm{~km}^{2}=1.15 \times 10^{9} \text { grams } \\
& \text { or } 1.15 \times 10^{6} \mathrm{~kg}
\end{aligned}
$$

or 1,150 tons.

Note: Popular estimates range from 20,000 to 100,000 tons/year. The amount is sensitive to both the logarithmic function used to model the power-law data, and the integration limits!

