

Understanding the data graph:

Problem 1 - A meteorite with a density of $3 \mathrm{grams} / \mathrm{cm}^{3}$ has a diameter of 4 centimeters (about 1 1/2 inches).
A) What is the mass of this meteorite assuming it is a sphere?
B) From the graph, where on the horizontal axis are objects of this mass located?
C) What is the number of impacts per year you would expect over an area of 10,000 square kilometers?

Replacing a data graph with an empirical model:

Problem 2 - What linear function of the form $y=m x+b$ best describes the data in the LogLog graph?

Problem 3 - What function $N(m)$ is obtained from your answer to Problem 2?

Problem 1 - A meteorite with a density of 3 grams $/ \mathrm{cm}^{3}$ has a diameter of 4 centimeters (about $11 / 2$ inches). A) What is the mass of this meteorite assuming it is a sphere? Answer: Mass = Density x Volume. Radius of sphere $=2 \mathrm{~cm}$, so $\mathrm{M}=3.0 \times(4 / 3)(3.14)$ $(2)^{3}=100$ grams .
B) From the graph, where on the horizontal axis are objects of this mass located? Answer: The horizontal axis is un units of \log (grams) so $\log (100)=2$, and this is the location half-way between 0 ' and '4' on the axis.
C) What is the number of impacts per year you would expect over an area of 1000 square kilometers? Answer: From ' $x=2$ ' ,a vertical line intercepts the data at about ' $y=-$ -3.5^{\prime} on the vertical axis. This represents $\log (n)=-3.5$ so that $N=0.00032$ impacts $/ \mathrm{km}^{2} /$ year. Over an area of $10000 \mathrm{~km}^{2}$, there would be an estimated 0.00032 impacts $/ \mathrm{km}^{2} /$ year $\times\left(10000 \mathrm{~km}^{2}\right)=3.2$ impacts per year.

Problem 2 - What linear function of the form $y=m x+b$ best describes the data in the LogLog graph? Answer: Use the two-point formula:
$(y-y 1)=\frac{y 2-y 1}{x 2-x 1}(x-x 1) \quad$ with $\mathrm{p} 1=(\mathrm{x} 1, \mathrm{y} 1)$ and $\mathrm{p} 2=(\mathrm{x} 2, \mathrm{y} 2)$
Select: $\mathrm{p} 1=(-4,+2) \quad \mathrm{p} 2=(16,-16)$ and get $\mathrm{y}=-0.9 \mathrm{x}-1.6$

Problem 3-What function $N(m)$ is obtained from your answer to Problem 2?
Answer: Since $y=\log (N(m))$ and $x=\log (m)$ we have
$\log (N(m))=-0.9 \log (m)-1.6$ then
$10^{\log (N(m))}=10^{\log (m)}$
And $N(m)=10^{-1.6} \mathrm{~m}^{-0.9}$ so $\mathrm{N}(\mathrm{m})=0.025 \mathrm{~m}^{-0.9}$

