AQI	РМ _{2.5} (µg/m ³)	ΡΜ₁₀ (μg/m ³)	Air Quality Descriptor
0–50	0.0-15.4	0-54	Good
51-100	15.5-40.4	55–154	Moderate
101–150	40.5-65.4	155-254	Unhealthy for Sensitive Groups
151–200	65.5–150.4	255-354	Unhealthy
201–300	150.5-250.4	355-424	Very unhealthy

Because of their impacts to health, the US Environmental Protection Agency monitors the level of aerosols in the atmosphere (troposphere) for two categories: Large aerosols (PM_{10}) with diameters near 10 microns, and small aerosols ($PM_{2.5}$) with diameters near 2.5 microns (μ m). The Air Quality Index (AQI) relates the density of each aerosol type (measured in micrograms per cubic meter or μ g/m³) to health risk as shown in the table above.

Problem 1 - Suppose the two types of aerosol particles have a density of 2000 kg/m³. Assuming that each particle is a perfect sphere, what are the average masses of each type of aerosol particle in kilograms?

Problem 2 – Based on your estimate of the aerosol particle masses in Problem 1, how many aerosol particles of each type would be present in a 1 cubic meter volume of air of the AQI was 150?

Answer Key

Problem 1 - Suppose the two types of aerosol particles have a density of 2000 kg/m³. Assuming that each particle is a perfect sphere, what are the average masses of each type of aerosol particle in kilograms?

Answer: Volume = $4/3 \pi R^3$,

 $PM_{2.5}$ aerosols: For R = 1.3 microns, R = 1.3×10^{-6} meters so V = $1.333 \times 3.141 \times (1.3 \times 10^{-6} \text{ m})^3$ = $9.2 \times 10^{-18} \text{ m}^3$.

Mass = density x volume, so

 $M = 2000 \times 9.2 \times 10^{-18}$ = **1.8x10**⁻¹⁴ kilograms.

PM₁₀ aerosols: R = 5 microns so

 $V = 1.333 \times 3.141 \times (5.0 \times 10^{-6} \text{ m})^3$ = 5.2×10⁻¹⁶ m³, then

Mass = $2000 \times 5.2 \times 10^{-16}$ = **1.0x10^{-12** kilograms.

Problem 2 – Based on your estimate of the aerosol particle masses in Problem 1, how many aerosol particles of each type would be present in a 1 cubic meter volume of air of the AQI was 150?

Answer: The table indicates that for an AQI of 150, the density of the PM₁₀ particles would be 254 μ g/m³. Since the mass of such an aerosol particle is about 1.0x10⁻¹² kilograms, we have

$$\begin{split} N &= 2.54 \times 10^{-6} \ \mu g/m^3 \ x \ (1 \ kg/1000 \ gm) \ x \ (1 \ particle/1.0 \times 10^{-12} \ kg) \\ &= \ \textbf{2500 particles/meter}^3. \end{split}$$

The table indicates that for an AQI of 150, the density of the $PM_{2.5}$ particles would be 65.4 μ g/m³. For $PM_{2.5}$ aerosols the density is 65.4 mg/m³. The average mass is 1.8×10^{-14} kg, so

```
N = 65.4x10^{-6} \ \mu g/m^3 \ x \ (1 \ kg/1000 \ gm) \ x \ (1 \ particle/1.8x10^{-14} \ kg) 
= 3.6x10^6 \ particles/meter^3.
```