

The InSight lander will arrive at Mars on September 20, 2016. One of its first jobs will be to photograph a three square meter area in front of the lander where the Seismic Experiment for Interior Structure (SEIS) and the Heat Flow and Physical Properties Package $\left(\mathrm{HP}^{3}\right)$ will be deposited with a mechanical arm. The photo above was taken by the successful NASA Phoenix Lander in 2008 using a similar camera system.

The InSight camera system called IDC is a digital camera with a one megapixel square format (1024×1024 pixels). Each pixel can see a square area of the surface that is 0.82 milliradians on each side.

Problem 1 - If one radian is 57.296 degrees, how many arcseconds across is the angular resolution of one pixel?

Problem 2 - What is the width of the camera's field of view in degrees: A) along one side of the image? B) Along the diagonal of the image?

Problem 3 - At a height of one meter from the ground, what is the resolution of the camera in millimeters/pixel?

Problem 4 - If the area to survey is 1.6 meters $\times 2.4$ meters, and each image must overlap 50% of the previous image, how many images have to be taken by the camera to survey the entire instrument area?

Problem 1 - If one radian is 57.296 degrees, how many arcseconds across is the angular resolution of one pixel?

Answer: 0.82 milliradians \times (1 radian/1000 milli) \times (57.296 degrees/1 radian) \times (3600 seconds/1 degree) = 169 arcseconds/pixel.

Problem 2 - What is the width of the camera's field of view in degrees: A) along one side of the image? B) Along the diagonal of the image?

Answer: A) Width $=1024$ pixels $\times 169$ arcseconds/pixel $\times(1$ degree $/ 3600$ seconds $)=$ 48.1 degrees. B) The image is a square, so the hypotenuse is $1.414 \times$ side, and so the diagonal length is 1.414×48.1 degrees $=\mathbf{6 8}$ degrees.

Problem 3 - At a height of one meter from the ground, what is the resolution of the camera in millimeters/pixel?

Answer: Because the angle is much less than one degree, we use the 'skinny triangle' proportion which says that $x / L=\theta / 1$ radian and so since 169 arcseconds = 0.00082 radians we have $x=I$ meter $x 0.00082$ so $x=0.82$ millimeters per pixel.

Problem 4 - If the area to survey is 1.6 meters $\times 2.4$ meters, and each image must overlap 50\% of the previous image, how many images have to be taken by the camera to survey the entire instrument area?

Answer: Each square image has a side length of 1024 pixels $\times 0.00082$ meters or 0.82 meters. The surface has a width of 1.6 meters and a length of 2.4 meters. If you tiled this field with camera images, you would need a tiling of 2×3 images or 6 images with no overlap. For a 50% overlap, the figure below shows how this would work out.

It would take three images vertically and 5 images horizontally for a total of 15 images.

