

Astronomers can determine the mass of a planet by using Kepler's Third Law, which is written in algebraic form as follows:

$$
p^{2}=-\cdots \pi^{2} a^{3}
$$

where G is Newton's constant of gravity equal to $6.67 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{kg} \mathrm{sec}^{2}, \mathrm{M}$ is the mass of the planet in kilograms, a is the average orbit radius in meters and T is the orbit period in seconds.

Here are some problems that let you work with this very important formula in astronomy.

Problem 1 - The martian moon Phobos was observed from Earth through telescopes to have an orbit radius of 9380 km and a period of 0.32 days, what is the mass of Mars?

Problem 2 - The martian moon Deimos has an orbit period of 1.26 days. What is its orbit radius from the center of Mars in kilometers to 3 significant figures?

Problem 3 - On March 10, 2006, the Mars Reconnaissance Orbiter was originally placed into a very elliptical orbit with a period of 35.5 hours and an average radius of $25,889 \mathrm{~km}$. What is the mass of Mars based on this orbit? Its final orbit was achieved in September 2006 with a circular radius of 3700 km . What is the final orbit period of MRO in the new circular orbit?

Problem 1 - The martian moon Phobos was observed from Earth through telescopes to have an orbit radius of 9380 km and a period of 0.32 days, what is the mass of Mars?

Answer: First solve the algebraic equation for M to get $M=\left(4 \pi^{2} / G\right)\left(a^{3} / p^{2}\right)$. Then use a $=9380 \mathrm{~km} \times 1000 \mathrm{~m} / \mathrm{km}=9.38 \times 106 \mathrm{~m}$, and $\mathrm{p}=0.32$ days $\times 24 \mathrm{~h} / \mathrm{d} \times 3600 \mathrm{~s} / \mathrm{hr}=$ 27648 seconds, to get
$M=\left[4 \times(3.141) 2 / 6.67 \times 10^{-11}\right]\left(9.38 \times 10^{6}\right)^{3} /(27648)^{2}=6.39 \times 10^{23} \mathbf{~ k g}$.

Problem 2 - The martian moon Diemos has an orbit period of 1.26 days. What is its orbit radius from the center of Mars in kilometers to 3 significant figures?

Answer: In this case we know M and p and need to solve for a :
$\mathrm{a}^{3}=\mathrm{GMp}^{2} / 4 \pi^{2}$ so $\mathrm{p}=1.26 \mathrm{~d} \times 24 \mathrm{~h} / \mathrm{d} \times 3600 \mathrm{~s} / \mathrm{h}=108864$ seconds, and so
$a^{3}=\left(6.67 \times 10^{-11}\right)\left(6.39 \times 10^{23}\right)(108864)^{2} /\left(4 \times 3.141^{2}\right)=1.27 \times 10^{22}$ so $a=23352$ kilometers and so $\mathrm{a}=23,400$ kilometers.

Problem 3 - On March 10, 2006, the Mars Reconnaissance Orbiter was originally placed into a very elliptical orbit with a period of 35.5 hours and an average radius of $25,889 \mathrm{~km}$. What is the mass of Mars based on this orbit? Its final orbit was achieved in September 2006 with a circular radius of 3700 km . What is the final orbit period in minutes of MRO in the new circular orbit?

Answer: Solving for p we get $p^{2}=\left(4 \pi^{2} / G M\right) a^{3}$, and so for $a=3,700,000$ meters and $M=6.39 \times 10^{23} \mathrm{~kg}$ we get $p^{2}=4.69 \times 10^{7}$ and so $p=6848$ seconds or 114 minutes.

