

An image from an instrument aboard NASA's Landsat Data Continuity Mission or LDCM satellite may look like a typical black-and-white image of a dramatic landscape, but it tells a story of temperature. The dark waters of the Salton Sea are shown in the semi-circle on the left-hand edge of the image. Crops create a checkerboard pattern stretching south to the Mexican border.

The size of this image is 26 km wide and 17 km tall. Each green square represents a planted crop measuring 160 meters on a side and an area of about 6 acres.

Problem 1 - What percentage of the total area of this image is occupied by planted crops?

Problem 2 - What percentage of all the farmed areas actually have growing crops?

Problem 3 - The annual rain fall is about 3 inches per year (0.076 meters/yr). If one gallon of water has a volume of 0.0038 meters ${ }^{3}$, how many gallons of water fall on the planted crop area each year?

```
New NASA Satellite Takes the Salton Sea's Temperature April 22,2013
http://www.nasa.gov/mission_pages/landsat/news/salton-sea.html
```

Problem 1 - What percentage of the total area of this image is occupied by planted crops?

Answer: The total area of this image is $26 \mathrm{~km} \times 17 \mathrm{~km}=442 \mathrm{~km}{ }^{2}$.
Students should count the number of green squares to tally the number of planted areas. A typical number would be about 50, so the total planted area is $50 \times 0.16 \mathrm{~km} \times$ $0.16 \mathrm{~km}=1.3 \mathrm{~km}^{2}$. The percentage of the total area is then $100 \% \times 1.3 / 442=0.3 \%$.

Problem 2 - What percentage of all the farmed areas actually have growing crops?
Answer: This is a bit more difficult because students have to count all of the square patches that they can see in the image, not just the green ones. A typical answer would be about 100 patches, so the total number of green + brown patches is about 150 , and so the percentage of the planted areas is $100 \% \times 50 / 150=33 \%$ or $1 / 3$.

Problem 3 - The annual rain fall is about 3 inches per year (0.076 meters/yr). If one gallon of water has a volume of 0.0038 meters ${ }^{3}$, how many gallons of water fall on the planted crop area each year?

Answer:
From Problem 1, the total planted area is $1.3 \mathrm{~km}^{2}$ or 1.3×10^{6} meters ${ }^{2}$. If the rain covers a depth of 0.076 meters each year, the rain volume is just $1.3 \times 10^{6} \times 0.076=$ 98800 cubic meters. This equals 98800 meters $^{3} \times\left(1\right.$ gallon $\left./ 0.0038 \mathrm{~m}^{3}\right)=\mathbf{2 6}$ million gallons each year.

