Calculations involving a single

$T_{F}=9 / 5 T_{C}+32$

 variable come up in many different ways in astronomy, like the popular one to the left for converting centigrade degrees (Tc) into Fahrenheit degrees (Tf). Here are some more examples.Problem 1 - To make the data easier to analyze, an image is shifted by X pixels to the right from a stating location of 326 . Find the value of X if the new location is 1436 by solving $326+X=1436$.

Problem 2 - The temperature, T , of a sunspot is $2,000 \mathrm{C}$ degrees cooler than the Sun's surface. If the surface temperature is $6,100 \mathrm{C}$, solve the equation for the sunspot temperature if $\quad T+2,000=6,100$.

Problem 3 - The radius, R (in kilometers) of a black hole is given by the formula $R=2.9 \mathrm{M}$, where M is the mass of the black hole in multiples of the Sun's mass. If an astronomer detects a black hole with a radius of 18.5 kilometers, solve the equation $18.5=2.9 \mathrm{M}$ for M to find the black hole's mass.

Problem 4 - The sunspot cycle lasts 11 years. If the peak of the cycle occurred in 1858, and 2001 solve the equation $2001=1858+11 \mathrm{X}$ to find the number of cycles, X, that have elapsed between the two years.

Answer Key

1 - To make the data easier to analyze, an image is shifted by X pixels to the right from a stating location of 326 . Find the value of X if the new location is 1436 by solving $326+X=1436$.
Answer: X = 1438 - 326 so $X=1112$.

2 - The temperature, T , of a sunspot is $2,000 \mathrm{C}$ degrees cooler than the Sun's surface. If the surface temperature is $6,100 \mathrm{C}$, solve the equation for the sunspot temperature if $\mathrm{T}+2,000=6,100$.
Answer: $T=6,100-2,000$ so $T=4,100 C$.

3 - The radius, R (in kilometers) of a black hole is given by the formula $R=2.9 \mathrm{M}$, where M is the mass of the black hole in multiples of the Sun's mass. If an astronomer detects a black hole with a radius of 18.5 kilometers, solve the equation $18.5=2.9 \mathrm{M}$ for M to find the black hole's mass.
Answer: $18.5=2.9 \mathrm{M}$ so $\mathrm{M}=8.5 / 2.9$ so $\mathrm{M}=6.4$ times the mass of the sun.

4 - The sunspot cycle lasts 11 years. If the peak of the cycle occurred in 1858, and 2001 solve the equation $2001=1858+11 \mathrm{X}$ to find the number of cycles, X , that have elapsed between the two years.
Answer: 2001-1858 = 11X; $143=11 X ; \quad X=143 / 11$ so $X=13$

