Rotation Velocity of a Galaxy

Spiral galaxy M-101 showing its bright nucleus and spiral arms. The radius of $\mathrm{M}-101$ is about 90,000 light years, which corresponds to $x=9$ in the formula for $\mathrm{V}(\mathrm{x})$. (Hubble image)

Stars orbit the center of a galaxy with speeds that decrease as their orbital distances increase. A simple function, $\mathrm{V}(\mathrm{x})$ can model the orbital speeds of stars as a function of their distance, x, from the nucleus of the galaxy:

$$
V(x)=\frac{350 x}{\left(1+x^{2}\right)^{\frac{3}{4}}}
$$

For example: At a distance of 10,000 light years from the center, x $=1.0$ and the rotation speed is $\mathrm{V}(1.0)=208$ kilometers/sec.

Problem 1 - For small x (i.e. $x<1$), what is the limiting form of $V(x)$?

Problem 2 - For large x, (i.e. $x>1$) what is the limiting form of $V(x)$?

Problem 3 - The radius of $\mathrm{M}-101$ is 90,000 light years. How fast are stars orbiting the center of $\mathrm{M}-101$ according to $\mathrm{V}(\mathrm{x})$? (Hint: At a radius of 90,000 light years, $x=9.0$. If the units of $V(x)$ are kilometers/sec, what is $V(x)$ at $x=9.0$?)

Problem 4 - For what value of x is $V(x)$ maximum?

Problem 5 - For $x=1$ the physical distance is 10,000 light years. How many years does it take a star to complete one circular orbit at $x=1.0$ if 1 light year equals $9.5 x$ $10^{12} \mathrm{~km}$, and there are 3.1×10^{7} seconds in a year?

Note: This example of $V(x)$ is for galaxies in which most of the mass is concentrated within their central regions ($x<1$), however, astronomers know that this model is not completely accurate. Beyond $x=1$, the rotation speeds for some galaxies, including the Milky Way, do not decrease rapidly as suggested by $V(x)$, but actually remain constant. This implies that some galaxies contain substantial amounts of 'Dark Matter' that is not in the form of stars or other known forms of matter.

Problem 1 - For small x, what is the limiting form of $V(x)$?
Answer: The denominator approaches 1 and so $V(x)=350 x$

Problem 2 - For large x , what is the limiting form of $\mathrm{V}(\mathrm{x})$?
Answer: In the denominator, x^{2} dominates over 1 so the denominator approaches $x^{3 / 2}$ and so $V(x)=350 x / x^{3 / 2}$ becomes:

$$
V(x)=\frac{350}{\sqrt{x}}
$$

Problem 3 - The radius of $\mathrm{M}-101$ is 90,000 light years. How fast are stars orbiting the center of $\mathrm{M}-101$ according to $\mathrm{V}(\mathrm{x})$? (Hint: At a radius of 90,000 light years, $\mathrm{x}=9$.0. If the units of $\mathrm{V}(\mathrm{x})$ are kilometers/sec, what is $\mathrm{V}(\mathrm{x})$ at $\mathrm{x}=9.0$?)
Answer:

$$
V(9)=\frac{350(9)}{\left(1+9^{2}\right)^{\frac{3}{4}}}=\mathbf{2 6} \text { kilometers } / \mathrm{sec}
$$

Note: X is a pure number. It represents the ratio $X=(d / 10,000$ light years) where d is a physical distance in units of light years. Example: at a physical distance of 40,000 light years from the center of the galaxy, $x=40,000$ LY/10,000 LY so $x=4.0$. The rotation speed of stars at this distance is just $\mathrm{V}(4)=350(4) /\left(1+4^{2}\right)^{3 / 4}=167$ kilometers $/ \mathrm{sec}$.

Problem 4 - For what value of x is $V(x)$ maximum?
Answer: Students can graph this function on a calculator. The maximum should occur near $\mathbf{x}=$ 1.4 with a value $\mathrm{V}(\mathrm{x})=217 \mathrm{~km} / \mathrm{sec}$.

Advanced students can use differential calculus and solve for x in the equation $d V(x) / d x=0$.

$$
\frac{d V(x)}{d x}=\frac{-(350 x)(3 / 4)\left(1+x^{2}\right)^{\frac{-1}{4}}(2 x)+350\left(1+x^{2}\right)^{\frac{3}{4}}}{\left(1+x^{2}\right)^{\frac{3}{2}}}
$$

so after some algebra:

$$
0=1-\frac{3 x^{2}}{2\left(1+x^{2}\right)} \quad \text { so } 2+2 x^{2}=3 x^{2} \quad \text { and } \quad x=(2)^{1 / 2}=1.414
$$

Problem 5 - For $\mathrm{x}=1$ the physical distance is 10,000 light years. How many years does it take a star to complete one circular orbit at $x=1.0$ if 1 light year equals $9.5 \times 10^{12} \mathrm{~km}$, and there are 3.1×10^{7} seconds in a year? Answer: For $x=1$ the physical distance is 10,000 light years or 9×10^{16} kilometers. The circumference of the orbit is $2 \pi \mathrm{R}=2(3.141)\left(9.5 \times 10^{16} \mathrm{~km}\right)=$ 6.0×10^{17} kilometers. The speed is $V(1)=208 \mathrm{~km} / \mathrm{sec}$, so the time in seconds is $\mathrm{T}=6 \times 10^{17}$ kilometers $/(208 \mathrm{~km} / \mathrm{sec})=2.9 \times 10^{15}$ seconds. Since there are 3.1×10^{7} seconds/year, it will take 93 million years for a star to orbit once-around the center of M-101.

