

Spherical tanks are found in many different situations, from the storage of cryogenic liquids, to fuel tanks. Under the influence of gravity, or acceleration, the liquid will settle in a way such that it fills the interior of the tank up to a height, h. We would like to know how full the tank is by measuring h and relating it to the remaining volume of the liquid. A sensor can then be designed to measure where the surface of the liquid is, and from this derive h.

Problem 1 - Slice the fluid into a series of vertically stacked disks with a radius $r(h)$ and a thickness dh . What is the general formula for the radius of each disk?

Problem 2 - Set up the integral for the volume of the fluid and solve the integral.

Problem 3-Assume that fluid is being withdrawn from the tank at a fixed rate $\mathrm{dV} / \mathrm{dt}=-\mathrm{F}$. What is the equation for the change in the height of the fluid volume with respect to time? A) Solve for the limits $h \ll R$ and $h \gg R$. B) Solve graphically for $R=1$ meter, $F=100 \mathrm{~cm}^{3} / \mathrm{min}$. (Hint: select values for h and solve for t).

Problem 1- $r(h)^{2}=R^{2}-(R-h)^{2}$ so $r(h)^{2}=2 R h-h^{2}$
Problem 2-The integrand will be $\pi\left(2 R \mathrm{~h}-\mathrm{h}^{2}\right) \mathrm{dh}$ and the solution is $\pi \mathrm{Rh}^{\mathbf{2}}-1 / 3 \pi \mathrm{~h}^{\mathbf{3}}$

Problem 3 -

dV
d h

Then

The integrands become: $\left(2 \pi R h-\pi h^{2}\right) d h=-F d t$. This can be integrated from $t=0$ to $t=T$ to obtain $\pi R h^{2}-1 / 3 \pi h^{3}=-F T$ and simplified to get

$$
h^{3}-3 R h^{2}-(3 F T) / \pi=0
$$

We would normally like to invert this equation to get $h(T)$, but cubic equations of the form x^{3} $\alpha x^{2}+\beta=0$ cannot be solved analytically. We can solve it for two limiting cases. Case 1 for a tank nearly empty where $h \ll R$. This yields $h(T)=(F T / R)^{1 / 2}$ Case 2 is for a tank nearly full so that $h \gg R$, and we get $h^{3}=3 F T / \pi$ and $h(T)=(3 F T / \pi)^{1 / 3}$. The full solution for $h(T)$ can be solved graphically. Since R is a constant, we can select a new variable $U=h / R$ and rewrite the equation in terms of the magnitude of h relative to the radius of the tank.
$U^{3}-3 U^{2}=(3 F T) / \pi R^{3}$ and plot this for selected combinations of (U, T) where time, T, is the dependent variable. The solution below is for $F=100 \mathrm{~cm}^{3} /$ minute, $R=1$ meter, with the intervals in h spaced 10 cm . The plot was generated using an Excel spreadsheet.

